Topics to be covered:

<table>
<thead>
<tr>
<th>Ch. 13: Applications of Partial Derivatives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Extreme Values</td>
<td>13.1: 1, 3, 6, 7, 9, 11, 17, 19, 24, 26</td>
</tr>
<tr>
<td>13.2 Extreme Values of Functions Defined on Restricted Domains</td>
<td>13.2: 3, 5, 7, 8, 9, 11, 17</td>
</tr>
<tr>
<td>13.3 Lagrange Multipliers</td>
<td>13.3: 1, 3, 5, 7, 9, 11, 19, 21, 22</td>
</tr>
</tbody>
</table>
Find and classify the critical points of the function

\[f(x, y) = 3y^2 - 2y^3 - 3x^2 + 6xy. \]

\[\nabla f(p) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

\[\text{Recall: To classify critical points } p \text{ of } f \]

we need to check the determinant of the Hessian of \(f \):

\[H_f(p) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}, \quad \det H_f(p) = f_{xx} f_{yy} - f_{xy}^2 \]

\[\text{Thm} \]

1) \(\det H_f(p) > 0 \) and \(f_{xx}(p) > 0 \) \(\Rightarrow \) \(f \) has a local min at \(p \)

2) \(\det H_f(p) > 0 \) and \(f_{xx}(p) < 0 \) \(\Rightarrow \) \(f \) has a local max at \(p \)

3) \(\det H_f(p) < 0 \) \(\Rightarrow \) \(p \) is a saddle point

4) \(\det H_f(p) = 0 \) \(\Rightarrow \) no \(\nabla f(p) \).

\[\begin{align*}
\frac{\partial f}{\partial x} &= -6x + by \\
\frac{\partial f}{\partial y} &= 6y - 6y^2 + 6x \\
f_{xx} &= -6, \quad f_{xy} = 6, \quad f_{yy} = 6 - 12y, \quad f_{yx} = 6
\end{align*} \]

\(\Rightarrow \) \(\det H_f(p) = \begin{vmatrix} -6 & 6 \\ 6 & 6 - 12y \end{vmatrix} \)

\[\begin{align*}
\nabla f(x_0, y_0) &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\
\left(\begin{array}{l}
6y - 6x = 0 \\
6y - 6y^2 + 6x = 0
\end{array} \right)
\end{align*} \]

\(\text{Observe that (i) gives } y = x \)

and hence eqn (ii) gives

\(6y - 6y^2 + 6x = 0 \iff y^2 - 2y = 0 \iff y = 0 \text{ or } y = 2 \)

\(\iff (x=0) \quad (x=2) \)

so, the critical points: \(P_1 = (0, 0), \quad P_2 = (x, x) \)

For the classification, check \(\det H_f(P_i) \) for each \(i \):

\[\det H_f(0, 0) = \det \begin{bmatrix} -6 & 6 \\ 6 & 6 \end{bmatrix} = -72 < 0 \]

So, \(P_1 = (0, 0) \) is a saddle point.
So, $p_1 = (0,0)$ is a saddle point.

- $\det H_f(2,2) = \det \begin{bmatrix} -6 & 6 \\ 6 & -13 \end{bmatrix} > 0$ and $f_{xx}(2,2) < 0$

So, f has a local max at $(2,2)$.
Question 02

Find the absolute maximum and minimum values of the function

\[f(x, y) = 2x^2 - 4x + y^2 - 4y + 1 \]

on the triangular region bounded by \(x = 0, y = 2, y = 2x \).

\[\nabla f(x, y) = \langle 4x - 4, 2y - 4 \rangle \]

so, \(\nabla f(1, 2) = \langle 0, 0 \rangle \) whereas \((x, y) = (1, 2) \) not in the interior of \(R \).

\(f_x \) and \(f_y \) are defined everywhere, so no singular points.

Check boundaries: \(\partial R = R_1 \cup R_2 \cup R_3 \).

On \(R_1 : y = 2x, 0 < x < 1 \):

\[f(x, y) = 6x^2 - 12x + 1 =: g(x) \]

\[y = 2x \]

To locate them:

- check \(g'(x) = 12x - 12 = 0 \) if \(x = 1 \) (not a critical point)
- end points: \(g(0) = 1 \)
 \[g(1) = -5 \]

On \(R_2 : x = 0, 0 < y < 2 \):

\[f(x, y) = y^2 - 4y + 1 =: h(y) \], again cont. on \([0, 2] \).

so, \(h(y) \) has abs. max/min.
so, \(h(y) \) has abs. max/min.

1. Look at \(h'(y) = 2y - 4 = 0 \) whenever \(y = 2 \)

2. \(h(0) = 1 \), \(h(2) = -3 \)

\[
\begin{align*}
\Rightarrow f(0,0) &= 1 \\
\Rightarrow f(0,2) &= -3
\end{align*}
\]

on \(y = 2, \ 0 \leq x \leq 1 \) : \(f(xy) = 2x^2 - 4x - 3 = k(x) \) on \([0,1] \) on \(\mathbb{R}_y \)

Clearly, \(k(x) \) is cont on \([0,1] \), so, \(k(x) \) has abs. max/min. by EVT.

To locate them:

1. Look at \(h'(x) = 4x - 4 = 0 \) if \(x = 1 \)

2. \(h(0) = -3 \) and \(h(1) = -5 \)

\[
\begin{align*}
\Rightarrow f(0,2) &= 3 \\
\Rightarrow f(1,2) &= -5
\end{align*}
\]

To sum up, checking those values gives

\(f \) has an abs. max at \((0,0) \), \(f(0,0) = 1 \)

\(f \) has an abs. min at \((1,2) \), \(f(1,2) = -5 \).
Question-03

Find the absolute maximum and minimum values of the function

\[f(x, y, z) = 2x + 3y + z \]

subject to the unit sphere \(x^2 + y^2 + z^2 = 1 \).

\[g(x, y, z) = 0 \]

Solution idea: To understand global behavior of \(f \), study its Lagrangian function and its local behavior.

Use the method of Lagrange multipliers:

Let \(L(x, y, z, \lambda) = f(x, y, z) + \lambda g(x, y, z) \) where \(g(x, y, z) = x^2 + y^2 + z^2 - 1 \)

Lagrangian function of \(f \)

Here, \(L(x, y, z, \lambda) = 2x + 3y + 2z + \lambda (x^2 + y^2 + z^2 - 1) \), \(\lambda \): Lagrange multiplier.

Look at the points \(P \) for which \(\nabla L \bigg|_P = \langle 0, 0, 0, 0 \rangle \) \(\text{(i)} \)

\[\begin{align*}
0 &= \frac{\partial L}{\partial x} = 2 + 2\lambda x \\
0 &= \frac{\partial L}{\partial y} = 3 + 2\lambda y \\
0 &= \frac{\partial L}{\partial z} = 1 + 2\lambda z \\
0 &= \frac{\partial L}{\partial \lambda} = x^2 + y^2 + z^2 - 1
\end{align*} \]

\(\Rightarrow \quad x = -\frac{1}{\lambda}, \quad y = -\frac{3}{2\lambda}, \quad z = -\frac{1}{2\lambda} \)

Substitute into the last eqn:

\[\frac{1}{\lambda^2} + \frac{9}{4\lambda^2} + \frac{1}{4\lambda^2} - 1 = 0 \]

\(\Rightarrow \)

\[\frac{14 - \lambda^2}{4\lambda^2} = 0 \quad \text{with} \quad \lambda \neq 0 \]
which means \[n = \pm \sqrt{\frac{3}{2}} \] (for \(n = \pm \sqrt{\frac{3}{2}} \))

so the desired points are

\[P_1 = (x_1, y_1, z_1) = \left(-\frac{2}{\sqrt{3}}, -\frac{3}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) \]

\[P_2 = \left(\frac{2}{\sqrt{3}}, \frac{3}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \] for \(n = -\sqrt{\frac{3}{2}} \)

observe

\[f(P_1) = -\frac{14}{\sqrt{3}} \quad \text{"abs min"} \]

\[f(P_2) = \frac{14}{\sqrt{3}} \quad \text{"abs max"} \]
Using the Lagrange multiplier method, find the point \(Q \) on the plane \(P: x + 2y + 2z = 3 \) that is closest to the origin.

\[P: x + 2y + 2z = 3 \]

It is enough to understand the extreme values of the func

\[S(x,y,z) = x^2 + y^2 + z^2 \]

subject to the constraint \(x + 2y + 2z = 3 \)

\[
\begin{bmatrix}
 x + 2y + 2z - 3 = 0 \\
 g(x,y,z)
\end{bmatrix}
\]

Use the method of Lag multipliers:

Define the karyon func. per \(S \) by

\[L(x,y,z,\lambda) = \frac{x^2 + y^2 + z^2}{S} + \lambda\left(\frac{x + 2y + 2z - 3}{g}\right) \]

Then look at the critical points of \(L \):

\[\nabla L = \langle 0, 0, 0, 0 \rangle \]

\[\frac{\partial L}{\partial x} = 2x + 2\lambda = 0 \]

\[\frac{\partial L}{\partial y} = 2y + 2\lambda = 0 \]

\[\frac{\partial L}{\partial z} = 2z + 2\lambda = 0 \]

\[\frac{\partial L}{\partial \lambda} = x + 2y + 2z - 3 = 0 \]

Observe that

\[(x) \text{ implies that} \quad x = -\frac{\lambda}{2}, \quad y = -\lambda, \quad \text{and} \quad z = -\lambda \]

Using the last eqn gives \[\lambda = -\frac{2}{3} \]

the point we need is \[Q = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3} \right) \]
Exercises

1. Find the absolute maximum and minimum values of the function

\[f(x, y) = x^4 + y^2 \]

on the unit disk \(D = \{(x, y) : x^2 + y^2 \leq 1\} \). (Use the Lagrange multiplier method on \(\partial D \).)

2. Let \(f(x, y) = x^3 y^5 \) and \(g(x, y) = x + y \).

(a) Find the absolute maximum of \(f \) subject to the constraint \(g(x, y) = 8 \) using the Lagrange multiplier method.

(b) By restricting \(f \) onto the line \(x + y = 8 \), verify that the value obtained in the first part is indeed the absolute maximum of \(f \), and also that \(f \) does not have any absolute minimum value on \(x + y = 8 \).